Source code for analysis.ZeroXAnalysis
from __future__ import print_function, division
import numpy as np
import logging
from numpy.lib import stride_tricks
from Analysis import Analysis
import pdb
logger = logging.getLogger(__name__)
[docs]class ZeroXAnalysis(Analysis):
"""
Zero-corssing descriptor class for generation of zero-crossing rate
analysis.
This descriptor calculates the zero-crossing rate for overlapping grains of
an AnalysedAudioFile object. A full definition of zero-crossing analysis
can be found in the documentation.
Arguments:
- analysis_group: the HDF5 file group to use for the storage of the
analysis.
- config: The configuration module used to configure the analysis
"""
def __init__(self, AnalysedAudioFile, frames, analysis_group, config=None):
super(ZeroXAnalysis, self).__init__(AnalysedAudioFile,frames, analysis_group, 'ZeroCrossing')
self.logger = logging.getLogger(__name__+'.{0}Analysis'.format(self.name))
self.analysis_group = analysis_group
self.logger.info("Creating zero crossing analysis for {0}".format(self.AnalysedAudioFile.name))
self.create_analysis(frames)
@staticmethod
def create_zerox_analysis(
frames,
window_size=512,
overlapFac=0.5,
*args,
**kwargs
):
"""Generate zero crossing value for window of the signal"""
if hasattr(frames, '__call__'):
frames = frames()
hopSize = int(window_size - np.floor(overlapFac * window_size))
# zeros at beginning (thus center of 1st window should be for sample nr. 0)
samples = np.append(np.zeros(np.floor(window_size/2.0)), frames)
# cols for windowing
cols = np.ceil((len(samples) - window_size) / float(hopSize)) + 1
# zeros at end (thus samples can be fully covered by frames)
samples = np.append(samples, np.zeros(window_size))
# TODO: Better handeling of zeros based on previous sign would improve
# accuracy.
epsilon = np.finfo(float).eps
samples[samples == 0.] += epsilon
frames = stride_tricks.as_strided(
samples,
shape=(cols, window_size),
strides=(samples.strides[0]*hopSize, samples.strides[0])
).copy()
zero_crossing = np.sum(np.abs(np.diff(np.sign(frames))), axis=1)
return zero_crossing
@staticmethod
def calc_zerox_frame_times(zerox_frames, sample_frames, samplerate):
"""Calculate times for frames using sample size and samplerate."""
if hasattr(sample_frames, '__call__'):
sample_frames = sample_frames()
# Get number of frames for time and frequency
timebins = zerox_frames.shape[0]
# Create array ranging from 0 to number of time frames
scale = np.arange(timebins+1)
# divide the number of samples by the total number of frames, then
# multiply by the frame numbers.
zerox_times = (sample_frames.shape[0]/timebins) * scale[:-1]
# Divide by the samplerate to give times in seconds
zerox_times = zerox_times / samplerate
return zerox_times
def hdf5_dataset_formatter(self, *args, **kwargs):
'''
Formats the output from the analysis method to save to the HDF5 file.
'''
samples = self.AnalysedAudioFile.read_grain()
samplerate = self.AnalysedAudioFile.samplerate
output = self.create_zerox_analysis(*args, **kwargs)
times = self.calc_zerox_frame_times(output, args[0], samplerate)
return ({'frames': output, 'times': times}, {})