Source code for analysis.VarianceAnalysis

from __future__ import print_function, division
import os
import numpy as np
import logging
from scipy import signal
from numpy.lib import stride_tricks
import pdb


from AnalysisTools import ButterFilter
from fileops import pathops

from Analysis import Analysis

logger = logging.getLogger(__name__)


[docs]class VarianceAnalysis(Analysis):
""" Variance descriptor class for generation of variance audio analysis. This descriptor calculates the Root Mean Square analysis for overlapping grains of an AnalysedAudioFile object. A full definition of variance analysis can be found in the documentation. Arguments: - analysis_group: the HDF5 file group to use for the storage of the analysis. - config: The configuration module used to configure the analysis """ def __init__(self, AnalysedAudioFile, frames, analysis_group, config=None): super(VarianceAnalysis, self).__init__(AnalysedAudioFile,frames, analysis_group, 'variance') self.logger = logging.getLogger(__name__+'.{0}Analysis'.format(self.name)) # Store reference to the file to be analysed self.AnalysedAudioFile = AnalysedAudioFile if config: self.window_size = config.variance["window_size"] * self.AnalysedAudioFile.samplerate / 1000 self.overlap = 1. / config.variance["overlap"] self.analysis_group = analysis_group self.logger.info("Creating variance analysis for {0}".format(self.AnalysedAudioFile.name)) self.create_analysis(frames, self.window_size, overlapFac=self.overlap) @staticmethod def create_variance_analysis(frames, window_size=512, overlapFac=0.5): """ Generate an energy contour analysis. Calculate the Variance values of windowed segments of the audio file and save to disk. """ # Calculate the period of the window in hz # lowest_freq = 1.0 / window_size # Filter frequencies lower than the period of the window # filter = ButterFilter() # filter.design_butter(lowest_freq, self.AnalysedAudioFile.samplerate) # TODO: Fix filter # frames = filter.filter_butter(frames) if hasattr(frames, '__call__'): frames = frames() hopSize = int(window_size - np.floor(overlapFac * window_size)) # zeros at beginning (thus center of 1st window should be for sample nr. 0) samples = np.append(np.zeros(np.floor(window_size/2.0)), frames) # cols for windowing cols = np.ceil((len(samples) - window_size) / float(hopSize)) + 1 # zeros at end (thus samples can be fully covered by frames) samples = np.append(samples, np.zeros(window_size)) frames = stride_tricks.as_strided( samples, shape=(cols, window_size), strides=(samples.strides[0]*hopSize, samples.strides[0]) ).copy() frame_mean = np.mean(frames, axis=1) variance = (1 / window_size) * np.sum((frames-np.vstack(frame_mean))**2, axis=1) return variance def hdf5_dataset_formatter(self, *args, **kwargs): ''' Formats the output from the analysis method to save to the HDF5 file. ''' samplerate = self.AnalysedAudioFile.samplerate variance = self.create_variance_analysis(*args, **kwargs) variance_times = self.calc_variance_frame_times(variance, args[0], samplerate) return ({'frames': variance, 'times': variance_times}, {}) @staticmethod def calc_variance_frame_times(varianceframes, sample_frames, samplerate): """Calculate times for frames using sample size and samplerate.""" if hasattr(sample_frames, '__call__'): sample_frames = sample_frames() # Get number of frames for time and frequency timebins = varianceframes.shape[0] # Create array ranging from 0 to number of time frames scale = np.arange(timebins+1) # divide the number of samples by the total number of frames, then # multiply by the frame numbers. variance_times = (float(sample_frames.shape[0])/float(timebins)) * scale[:-1].astype(float) # Divide by the samplerate to give times in seconds variance_times = variance_times / samplerate return variance_times