Source code for analysis.VarianceAnalysis
from __future__ import print_function, division
import os
import numpy as np
import logging
from scipy import signal
from numpy.lib import stride_tricks
import pdb
from AnalysisTools import ButterFilter
from fileops import pathops
from Analysis import Analysis
logger = logging.getLogger(__name__)
[docs]class VarianceAnalysis(Analysis):
"""
Variance descriptor class for generation of variance audio analysis.
This descriptor calculates the Root Mean Square analysis for overlapping
grains of an AnalysedAudioFile object. A full definition of variance
analysis can be found in the documentation.
Arguments:
- analysis_group: the HDF5 file group to use for the storage of the
analysis.
- config: The configuration module used to configure the analysis
"""
def __init__(self, AnalysedAudioFile, frames, analysis_group, config=None):
super(VarianceAnalysis, self).__init__(AnalysedAudioFile,frames, analysis_group, 'variance')
self.logger = logging.getLogger(__name__+'.{0}Analysis'.format(self.name))
# Store reference to the file to be analysed
self.AnalysedAudioFile = AnalysedAudioFile
if config:
self.window_size = config.variance["window_size"] * self.AnalysedAudioFile.samplerate / 1000
self.overlap = 1. / config.variance["overlap"]
self.analysis_group = analysis_group
self.logger.info("Creating variance analysis for {0}".format(self.AnalysedAudioFile.name))
self.create_analysis(frames, self.window_size, overlapFac=self.overlap)
@staticmethod
def create_variance_analysis(frames, window_size=512,
overlapFac=0.5):
"""
Generate an energy contour analysis.
Calculate the Variance values of windowed segments of the audio file and
save to disk.
"""
# Calculate the period of the window in hz
# lowest_freq = 1.0 / window_size
# Filter frequencies lower than the period of the window
# filter = ButterFilter()
# filter.design_butter(lowest_freq, self.AnalysedAudioFile.samplerate)
# TODO: Fix filter
# frames = filter.filter_butter(frames)
if hasattr(frames, '__call__'):
frames = frames()
hopSize = int(window_size - np.floor(overlapFac * window_size))
# zeros at beginning (thus center of 1st window should be for sample nr. 0)
samples = np.append(np.zeros(np.floor(window_size/2.0)), frames)
# cols for windowing
cols = np.ceil((len(samples) - window_size) / float(hopSize)) + 1
# zeros at end (thus samples can be fully covered by frames)
samples = np.append(samples, np.zeros(window_size))
frames = stride_tricks.as_strided(
samples,
shape=(cols, window_size),
strides=(samples.strides[0]*hopSize, samples.strides[0])
).copy()
frame_mean = np.mean(frames, axis=1)
variance = (1 / window_size) * np.sum((frames-np.vstack(frame_mean))**2, axis=1)
return variance
def hdf5_dataset_formatter(self, *args, **kwargs):
'''
Formats the output from the analysis method to save to the HDF5 file.
'''
samplerate = self.AnalysedAudioFile.samplerate
variance = self.create_variance_analysis(*args, **kwargs)
variance_times = self.calc_variance_frame_times(variance, args[0], samplerate)
return ({'frames': variance, 'times': variance_times}, {})
@staticmethod
def calc_variance_frame_times(varianceframes, sample_frames, samplerate):
"""Calculate times for frames using sample size and samplerate."""
if hasattr(sample_frames, '__call__'):
sample_frames = sample_frames()
# Get number of frames for time and frequency
timebins = varianceframes.shape[0]
# Create array ranging from 0 to number of time frames
scale = np.arange(timebins+1)
# divide the number of samples by the total number of frames, then
# multiply by the frame numbers.
variance_times = (float(sample_frames.shape[0])/float(timebins)) * scale[:-1].astype(float)
# Divide by the samplerate to give times in seconds
variance_times = variance_times / samplerate
return variance_times