Source code for analysis.SpectralCrestFactorAnalysis
from __future__ import print_function, division
import numpy as np
import logging
import pdb
import warnings
from Analysis import Analysis
[docs]class SpectralCrestFactorAnalysis(Analysis):
"""
Spectral crest factor descriptor class for generation of spectral crest
factor audio analysis.
This descriptor calculates the spectral crest factor for overlapping grains
of an AnalysedAudioFile object. A full definition can be found in the
documentation.
Arguments:
- analysis_group: the HDF5 file group to use for the storage of the
analysis.
- config: The configuration module used to configure the analysis
"""
def __init__(self, AnalysedAudioFile, frames, analysis_group, config=None):
super(SpectralCrestFactorAnalysis, self).__init__(AnalysedAudioFile, frames, analysis_group, 'SpcCrestFactor')
# Create logger for module
self.logger = logging.getLogger(__name__+'.{0}Analysis'.format(self.name))
# Store reference to the file to be analysed
self.AnalysedAudioFile = AnalysedAudioFile
self.nyquist_rate = self.AnalysedAudioFile.samplerate / 2.
try:
fft = self.AnalysedAudioFile.analyses["fft"]
except KeyError:
raise KeyError("FFT analysis is required for spectral spread "
"analysis.")
self.analysis_group = analysis_group
self.logger.info("Creating Spectral CrestFactor analysis for {0}".format(self.AnalysedAudioFile.name))
self.create_analysis(
self.create_spccf_analysis,
fft.analysis['frames'],
)
self.spccf_window_count = None
@staticmethod
[docs] def create_spccf_analysis(fft):
'''
Calculate the spectral crest factor of the fft frames.
'''
fft = fft[:]
# Get the positive magnitudes of each bin.
magnitudes = np.abs(fft)
# Get highest magnitude
if not np.nonzero(magnitudes)[0].size:
y = np.empty(magnitudes.shape[0])
y.fill(np.nan)
return y
# Get the highest magnitude value for each spectral frame
max_bins = np.max(magnitudes, axis=1)
mag_sum = np.sum(magnitudes, axis=1)
with warnings.catch_warnings():
warnings.filterwarnings('ignore')
spectral_cf = max_bins / mag_sum
return spectral_cf
@staticmethod
[docs] def calc_spccf_frame_times(spccf_frames, sample_frame_count, samplerate):
"""Calculate times for frames using sample size and samplerate."""
# Get number of frames for time and frequency
timebins = spccf_frames.shape[0]
# Create array ranging from 0 to number of time frames
scale = np.arange(timebins+1)
# divide the number of samples by the total number of frames, then
# multiply by the frame numbers.
spccf_times = (float(sample_frame_count)/float(timebins)) * scale[:-1].astype(float)
# Divide by the samplerate to give times in seconds
spccf_times = spccf_times / samplerate
return spccf_times