Source code for analysis.PeakAnalysis
from __future__ import print_function, division
import os
import numpy as np
import logging
from scipy import signal
from numpy.lib import stride_tricks
import pdb
from fileops import pathops
from Analysis import Analysis
logger = logging.getLogger(__name__)
[docs]class PeakAnalysis(Analysis):
"""
Peak descriptor class for generation of per-grain maximum peak audio analysis.
This descriptor calculates the maximum peak for overlapping grains of an
AnalysedAudioFile object. A full definition of peak analysis can be found in
the documentation.
Arguments:
- analysis_group: the HDF5 file group to use for the storage of the
analysis.
- config: The configuration module used to configure the analysis
"""
def __init__(self, AnalysedAudioFile, frames, analysis_group, config=None):
super(PeakAnalysis, self).__init__(AnalysedAudioFile,frames, analysis_group, 'Peak')
self.logger = logging.getLogger(__name__+'.{0}Analysis'.format(self.name))
# Store reference to the file to be analysed
self.AnalysedAudioFile = AnalysedAudioFile
self.analysis_group = analysis_group
self.logger.info("Creating Peak analysis for {0}".format(self.AnalysedAudioFile.name))
self.create_analysis(frames)
@staticmethod
def create_peak_analysis(frames, window_size=512,
window=signal.triang,
overlapFac=0.5):
"""
Calculate the Peak values of windowed segments of the audio file and
save to disk.
"""
if hasattr(frames, '__call__'):
frames = frames()
# Calculate the period of the window in hz
# lowest_freq = 1.0 / window_size
# Filter frequencies lower than the period of the window
# filter = ButterFilter()
# filter.design_butter(lowest_freq, self.AnalysedAudioFile.samplerate)
# TODO: Fix filter
# frames = filter.filter_butter(frames)
# Generate a window function to apply to peak windows before analysis
hopSize = int(window_size - np.floor(overlapFac * window_size))
# zeros at beginning (thus center of 1st window should be for sample nr. 0)
samples = np.append(np.zeros(np.floor(window_size/2.0)), frames)
# cols for windowing
cols = np.ceil((len(samples) - window_size) / float(hopSize)) + 1
# zeros at end (thus samples can be fully covered by frames)
samples = np.append(samples, np.zeros(window_size))
frames = stride_tricks.as_strided(
samples,
shape=(cols, window_size),
strides=(samples.strides[0]*hopSize, samples.strides[0])
).copy()
peak = np.max(np.abs(frames), axis=1)
return peak
def hdf5_dataset_formatter(self, *args, **kwargs):
'''
Formats the output from the analysis method to save to the HDF5 file.
'''
samplerate = self.AnalysedAudioFile.samplerate
peak = self.create_peak_analysis(*args, **kwargs)
peak_times = self.calc_peak_frame_times(peak, args[0], samplerate)
return ({'frames': peak, 'times': peak_times}, {})
@staticmethod
def calc_peak_frame_times(peakframes, sample_frames, samplerate):
"""Calculate times for frames using sample size and samplerate."""
if hasattr(sample_frames, '__call__'):
sample_frames = sample_frames()
# Get number of frames for time and frequency
timebins = peakframes.shape[0]
# Create array ranging from 0 to number of time frames
scale = np.arange(timebins+1)
# divide the number of samples by the total number of frames, then
# multiply by the frame numbers.
peak_times = (float(sample_frames.shape[0])/float(timebins)) * scale[:-1].astype(float)
# Divide by the samplerate to give times in seconds
peak_times = peak_times / samplerate
return peak_times